На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Как Яндекс помогает астрофизикам изучать вспышки на красных карликах

Как Яндекс помогает астрофизикам изучать вспышки на красных карликахКрасные карлики — наиболее распространённый тип звёзд в нашей Галактике. Это не самые яркие объекты: они меньше нашего Солнца и светят слабее. Однако большинство планетных систем обнаружено именно вокруг звёзд этого класса. Благодаря многолетним исследованиям у астрофизиков накопилось множество данных о поведении красных карликов.

Каталоги современных обзоров неба содержат десятки миллиардов отдельных наблюдений для сотен миллионов таких звёзд. Традиционные методы обработки данных больше не справляются с такими объёмами, поэтому для их анализа учёные все чаще используют методы машинного обучения. В этом году мы запустили совместный проект со специалистами Государственного астрономического института имени П. К. Штернберга МГУ, Факультета Космических Исследований МГУ и Университета Карнеги‑Меллона, которые работают в международной команде SNAD. Центр технологий […]

Как Яндекс помогает астрофизикам изучать вспышки на красных карликах

Красные карлики — наиболее распространённый тип звёзд в нашей Галактике. Это не самые яркие объекты: они меньше нашего Солнца и светят слабее. Однако большинство планетных систем обнаружено именно вокруг звёзд этого класса.

Благодаря многолетним исследованиям у астрофизиков накопилось множество данных о поведении красных карликов. Каталоги современных обзоров неба содержат десятки миллиардов отдельных наблюдений для сотен миллионов таких звёзд. Традиционные методы обработки данных больше не справляются с такими объёмами, поэтому для их анализа учёные все чаще используют методы машинного обучения.

В этом году мы запустили совместный проект со специалистами Государственного астрономического института имени П.

К. Штернберга МГУ, Факультета Космических Исследований МГУ и Университета Карнеги‑Меллона, которые работают в международной команде SNAD. Центр технологий для общества Yandex Cloud помог учёным выстроить пайплайн машинного обучения для поиска звёздных вспышек с помощью облачного сервиса Yandex DataSphere и в итоге создать самую крупную выборку вспышек на красных карликах по данным наземных наблюдений.

Совместно с исследователями Анастасией Лаврухиной, Борисом Демковым, Константином Маланчевым @hombitи Марией Пружинской расскажем, как именно машинное обучение помогает астрофизикам, и какие новые научные прорывы это может обещать.

Читать далее

Read More 

 

Ссылка на первоисточник
наверх